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large cost savings. One avenue of future work in this area is incor-
porating the effect of the correlationof the sine loads for harmonics
of a single rotating shaft.
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Nomenclature
a = vehicle thrust-to-weight ratio
g = gravitationalacceleration,ms ¡ 2

k = velocity constant, ms ¡ 1

m = vehicle mass, kg
T = vehicle thrust, N
t = time, s
u = vehicle velocity, ms ¡ 1

ve = exhaust velocity, ms ¡ 1

v ¤
e = effective exhaust velocity, ms ¡ 1

z = tan( u / 2)
D Vg = gravity loss, ms ¡ 1

k = payload ratio
l e = engine thrust-to-weight ratio
l es = design constant
r es = design constant
u = vehicle � ight path angle, rad

Subscripts

b = at burnout
opt = optimum (for maximum k )
0 = initial
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Introduction

T HE analysis of the ascent of a single-stage rocket from a
planetary surface to orbit on a gravity-turn trajectory is well

known.1 ¡ 4 This Note extends the analysis to quickly arrive at an
expression for the burnout-to-initialmass ratio of a single-stageve-
hicle ascending in vacuo and thereafter derives some bounds on the
optimum initial vehicle thrust-to-weight ratio. The analysis is not
directly useful for detailed studies of vehicle performance because
a gravity turn is not an optimal trajectory, but it may still be edu-
cationally instructive,or possibly useful for concept evaluationand
preliminary design studies.

Analysis of a Single-Stage Rocket on a Gravity Turn
In a � at-Earth approximation,1,2 ignoring atmospheric drag, the

equations of motion of a rocket vehicle ascending on a gravity turn
(with no thrust vectoring) are

m
du

dt
= T ¡ mg cos u (1a)

u
du

dt
= g sin u (1b)

where u is the angle of the � ight path from the vertical, T is the
vehicle thrust, m is the vehicle � ight mass, u is the vehicle velocity,
and g is the gravitational acceleration (assumed to be constant and
equal to the surface value, g0).

In the analysis that follows, it will be assumed that the vehicle
thrust-to-weight ratio a is held constant at the initial (liftoff) value
throughout the ascent:

a = T / mg = T0 / m0g0 = a0 (2)

In this particular case, the substitution z = tan( u / 2) yields the
solution1

u = kza ¡ 1(1 + z2) (3a)

du

dz
= k{(a ¡ 1)za ¡ 1 + (a + 1)za} (3b)

where the constant k is equal to half the burnout velocity, k =ub /2,
if and when u =ub and m =mb at z =1 (a condition that is assumed
hereafter).

If the thrust is approximated by

T = ¡ ve
dm

dt
(4)

where the exhaust velocity ve is assumed to be constant, then the
rocket’s acceleration is given by

du

dt
= ¡

v ¤
e

m
dm

dt
(5)

where v ¤
e is an effective exhaust velocity, v ¤

e =ve(1 ¡ a ¡ 1 cos u ).
The burnout-to-initial mass ratio mb / m0 is found by integration
with respect to velocity from u =0 to the burnout velocity u =ub:

»
mb

m0

¼
= ¡

Z ub

0

du

v ¤
e

(6)

Noting cos u =(1 ¡ z2) / (1 + z2), this integral becomes
»

mb

m0

¼
= ¡

Z ub

0

»
1 ¡

(1 ¡ z2)
a(1 + z2)

¼ ¡ 1
du

ve

= ¡
ub

ve

Z 1

0

1

2
a(1 + z2)za ¡ 2 dz (7)

which can easily be solved to yield a simple expression:

mb

m0
= exp

»
¡

ub

ve

a2

(a2 ¡ 1)

¼
(8)
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Hence, it can be seen that the burnout-to-initialmass ratio is lower
than the ideal value, exp{¡ ub / ve}, and the gravity loss incurred
during the ascent is2

D Vg = ve {m0 / mb} ¡ ub = ub / (a2 ¡ 1) (9)

Optimum Thrust-to-Weight Ratio
Suppose that in a conceptual design study the initial mass m0 of

the vehicle considered is � xed, and the vehicle mass breakdown is
written as

m0 = mb + mpropellant (10a)

mb = mpayload + mmisc + mstructure + mengine (10b)

where mpropellant is the ascent propellant mass, mpayload is the pay-
load, m structure is the structural mass, mengine is the total engine
mass, and mmisc is the mass of all other subsystems and miscella-
neous items. Hence, for a prescribedvalue of ve / vb , the payload-to-
initialmass ratio, k =mpayload / m0 , is maximizedwhenmb ¡ mmisc ¡
mstructure ¡ mengine is maximized.

Assume to begin with that mmisc and mstructure are � xed. In this
case k is maximized when mb ¡ mengine is maximized. If the engine
thrust-to-weightratio l e =T0 / (g0mengine) is heldconstant,then [dif-
ferentiatingEq. (8) with respect to a] it follows that k is a maximum
when a =aopt given by

2aopt¡
a2

opt ¡ 1
¢2

= l ¡ 1
e

ve

ub

m0

mb
= l ¡ 1

e

ve

vb
exp

(
ub

ve

a2
opt¡

a2
opt ¡ 1

¢
)

(11)

Now assume that mmisc and mstructure vary as the vehicle design
thrust-to-weightratio is altered. An exact expression can no longer
be de� ned (because the vehicle’s structure and subsystem masses
will depend on a variety of design factors5 ), but to � rst order it is
not unreasonable to adopt an approximate linear relation:

(mstructure + mengine + mmisc) / m0 = r es + l ¡ 1
es a (12)

where r es and l es are constants (and l es < l e). In this more general
case, the condition for maximum k is the same as Eq. (11) except
the design constant l es replaces l e :

2aopt¡
a2

opt ¡ 1
¢2

= l ¡ 1
es

ve

ub

m0

mb

(13)

The optimumvalueof initial thrust-to-weightimpliedby Eq. (13)
has a lower limit. The minimum feasible value of aopt occurs as
ms + me + mmisc ! mb (or as k ! 0) and also as r es ! 0, that is,
when

2aopt¡
a2

opt ¡ 1
¢2

!
ve

ub

l ¡ 1
es¡

l ¡ 1
es aopt + r es

¢ ! a ¡ 1
opt

ve

ub

(14)

or (rearranging this equation and solving the resulting quadratic)
when

aopt ! aoptmin =
¡

1
2
ub ê ve

¢ 1
2 +

¡
1 + 1

2
ub ê ve

¢ 1
2 (15)

Hence, irrespectiveof the actual values of r es and l es , the optimum
vehicle thrust-to-weight ratio aopt lies within certain bounds given
by Eqs. (11) and (15), providedpositive k is achievableand provided
k needs to be maximized.

Limitations of the Analysis
Note that, in reality, constant in-� ight vehicle thrust-to-weight

ratio is unlikely. If a vehicle has multiple engines, then these en-

gines might be shut down sequentially during the ascent to prevent
acceleration limits from being exceeded; but it is unlikely that each
engine would be throttled in such a way that the total thrust varies
directly in proportion to vehicle � ight mass. Moreover gravity-turn
trajectories(with/without the conditionassumedherein that burnout
occurs at z =1) are not optimal.4 Nevertheless, despite these differ-
ences, the optimum conditions for vehicle thrust-to-weight found
here appear to be useful for concept evaluation and preliminary
estimates. To demonstrate this assertion, consider the following
examples.

Single-Stage Rocket Ascent from
Earth’s Surface to Orbit

As a � rst example, consider a single-stage-to-orbit launch vehi-
cle ascending to low Earth orbit, using liquid hydrogen and oxygen
propellants, such that ve

»=4500 ms ¡ 1 and ve / ub =0.5. If l e =50
(a typical value with current technology), then mb ¡ mengine is max-
imized when mb / m0

»=0.1 and aopt
»=3. If structuralmass increases

signi� cantly with launch acceleration, then the optimum initial ve-
hicle thrust-to-weight ratio (for maximum payload ratio) will be
lower, but it will not be less than aoptmin =1 +

p
2 at which point

mb / m0
»=0.089. Hence, k is maximized when aopt lies between ap-

proximately 2.4 and 3. Note, however, that in reality this result
ignores the effects of drag losses, etc. Hence, a lower initial vehicle
thrust-to-weightratio might be expected.

Apollo Lunar Module Ascent
As a second example, consider the ascent stage of the Apollo

Lunar Module,5 which had a near-constant ascent thrust of about
T =15.57 kN and an initial mass of about m0 =4700 kg on the
lunar surface where g0

»=1.62 m/s2 , such that a0
»=2 (depending

more exactly on the mission number: Apollo 11–17). To attain
lunar orbital velocity at ub

»=1.63 km/s, with an exhaust velocity
of about ve =3050 ms ¡ 1 , Eq. (8) gives mb / m0

»=0.495, which is
slightlyworse than the actual value of 0.52. Furthermore, assuming
me =213 kg (the mass of the ascent propulsion system5) such that
l e

»=45, Eq. (11) gives aopt
»=3.1, and Eq. (15) gives aoptmin

»=1.64.
Hence, despite the differences in trajectory thrust pro� le, etc., the
simple analysispresentedherein does not give unreasonableresults.
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