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large cost savings. One avenue of future work in this area is incor-
porating the effect of the correlationof the sine loads for harmonics
of a single rotating shaft.
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Nomenclature
a = vehicle thrust-to-weightratio
g = gravitational acceleration, ms ™2
k = velocity constant, ms ™!
m = vehicle mass, kg
T = vehicle thrust, N
t = time, S
u = vehicle velocity, ms™!
Ve = exhaust velocity, ms™!
vy = effective exhaust velocity, ms™!
z = tan(¢/2)
AV, = gravity loss, ms™!
A = payloadratio
e = engine thrust-to-weightratio
H.s = design constant
Oy = design constant
¢ = vehicle flight path angle, rad
Subscripts
b = at burnout
opt = optimum (for maximum 2)
0 = initial
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Introduction

HE analysis of the ascent of a single-stage rocket from a

planetary surface to orbit on a gravity-turn trajectory is well
known.!™ This Note extends the analysis to quickly arrive at an
expression for the burnout-to-initialmass ratio of a single-stage ve-
hicle ascending in vacuo and thereafter derives some bounds on the
optimum initial vehicle thrust-to-weight ratio. The analysis is not
directly useful for detailed studies of vehicle performance because
a gravity turn is not an optimal trajectory, but it may still be edu-
cationally instructive, or possibly useful for concept evaluation and
preliminary design studies.

Analysis of a Single-Stage Rocket on a Gravity Turn

In a flat-Earth approximation,’? ignoring atmospheric drag, the
equations of motion of a rocket vehicle ascending on a gravity turn
(with no thrust vectoring) are

du =T é (1a)
me— =T —m
% g cOS a
d¢
— —osi 1b
udt gsing (1b)

where ¢ is the angle of the flight path from the vertical, T is the
vehicle thrust, m is the vehicle flight mass, u is the vehicle velocity,
and g is the gravitational acceleration (assumed to be constant and
equal to the surface value, go).

In the analysis that follows, it will be assumed that the vehicle
thrust-to-weightratio a is held constant at the initial (liftoff) value
throughoutthe ascent:

a =T/mg =Ty/mygy =ay ?2)

In this particular case, the substitution z = tan(¢/2) yields the
solution'

u=k"'(1+2% (3a)

du =k{(a — Dz '+ (a + 1)z°}) (3b)
dz
where the constant k is equal to half the burnout velocity, kK =u,/2,
ifand when u =u;, andm =m,, at z =1 (a condition thatis assumed
hereafter).
If the thrust is approximated by

dm
T =—v,— “)
¢ dr
where the exhaust velocity v, is assumed to be constant, then the
rocket’s accelerationis given by

de v dm )
dt m dt

where v} is an effective exhaust velocity, v =v.(1 — a™' cos ¢).
The burnout-to-initial mass ratio m;,/m, is found by integration
with respect to velocity from u =0 to the burnout velocity u =u,:

up
&{ﬂ} =—/ d ©)
my 0 v,

Noting cos ¢ =(1 — z2)/(1 + z?), this integral becomes

&,{ﬂ}z_/"”{l_ﬂ;ﬁ}_ldl
my 0 a(l +z2) v,

1
1

=L —a(l + z2%)z*7%dz (7)
Ve Jo 2

which can easily be solved to yield a simple expression:

2
m =exp{_ﬂa_} ®
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Hence, it can be seen that the burnout-to-initial mass ratio is lower
than the ideal value, exp{—u,/v,}, and the gravity loss incurred
during the ascent is”

AV, =v, b {mo/my} — uy =uy/(@* — 1) 9)
Optimum Thrust-to-Weight Ratio

Suppose that in a conceptual design study the initial mass m of
the vehicle considered is fixed, and the vehicle mass breakdown is
written as

my =my + mpropcllam (loa)
m, = mpayload + M yisc + Mgiructure + mcnginc (IOb)

where mopeiiane 1S the ascent propellant mass, mpayi0aa 1 the pay-
load, Mgpcwre 18 the structural mass, Meyine is the total engine
mass, and m ;. is the mass of all other subsystems and miscella-
neous items. Hence, for a prescribed value of v,/ v,, the payload-to-
initialmass ratio, A =m u10aa/ Mo, s maximized whenn;, — npyisc —
Mgiructure — Mengine is maximized.

Assume to begin with that m ;. and Mgypyeure are fixed. In this
case A is maximized when m;, — Meyin. is maximized. If the engine
thrust-to-weightratio i1, =T/ (goMengine) is held constant, then [dif-
ferentiating Eq. (8) with respectto a] it follows that A is a maximum
when a =a,, given by

2
2a0p[ _1 Ve My _1 Ve up Aopt
I I el T ()
(agp[ - 1) Up m, Vb Ve (aopI - 1)

Now assume that m ;. and Mgyeure Vary as the vehicle design
thrust-to-weightratio is altered. An exact expression can no longer
be defined (because the vehicle’s structure and subsystem masses
will depend on a variety of design factors®), but to first order it is
not unreasonable to adopt an approximate linear relation:

-1
(mst.ructurc + Mengine + mmisc)/m() =0, + H. a (12)

where o, and u,, are constants (and pt,,; < pt.). In this more general
case, the condition for maximum A is the same as Eq. (11) except
the design constant u,, replaces ,:
2a, _ Vv, my
+ =ul=— (13)
(@ —1) o 1y
The optimum value of initial thrust-to-weightimplied by Eq. (13)
has a lower limit. The minimum feasible value of a., occurs as
my +m, + my;.— my (or as A— 0) and also as o, — 0, that is,
when

-1
pr Ve Mo “1 Ve
e

2 R = Ao
-1
(agp[ - 1) Up (/Jes Aopt + Ge,s) Up

or (rearranging this equation and solving the resulting quadratic)
when

(14)

Qopt ™ Aoptyip =(%u”| Vf)% + (1 + %u”| Vf)% (15)

Hence, irrespective of the actual values of o, and p,, the optimum
vehicle thrust-to-weightratio a, lies within certain bounds given
by Eqs. (11) and (15), provided positive A is achievableand provided
A needs to be maximized.

Limitations of the Analysis

Note that, in reality, constant in-flight vehicle thrust-to-weight
ratio is unlikely. If a vehicle has multiple engines, then these en-

gines might be shut down sequentially during the ascent to prevent
accelerationlimits from being exceeded; but it is unlikely that each
engine would be throttled in such a way that the total thrust varies
directly in proportion to vehicle flight mass. Moreover gravity-turn
trajectories(with/without the conditionassumed herein that burnout
occurs at z = 1) are not optimal * Nevertheless, despite these differ-
ences, the optimum conditions for vehicle thrust-to-weight found
here appear to be useful for concept evaluation and preliminary
estimates. To demonstrate this assertion, consider the following
examples.

Single-Stage Rocket Ascent from
Earth’s Surface to Orbit

As a first example, consider a single-stage-to-orht launch vehi-
cle ascending to low Earth orbit, using liquid hydrogen and oxygen
propellants, such that v, =4500 ms™! and v,/u, =0.5. If p, =50
(a typical value with currenttechnology), then m,, — mygine is max-
imized when m;,/my =0.1 and a., =3. If structural mass increases
significantly with launch acceleration, then the optimum initial ve-
hicle thrust-to-weight ratio (for maximum payload ratio) will be
lower, but it will not be less than @y, =1+ /2 at which point
my,/ my =0.089. Hence, A is maximized when a, lies between ap-
proximately 2.4 and 3. Note, however, that in reality this result
ignores the effects of drag losses, etc. Hence, a lower initial vehicle
thrust-to-weightratio might be expected.

Apollo Lunar Module Ascent

As a second example, consider the ascent stage of the Apollo
Lunar Module,” which had a near-constant ascent thrust of about
T =15.57 kN and an initial mass of about my =4700 kg on the
lunar surface where g, =1.62 m/s?, such that ay =2 (depending
more exactly on the mission number: Apollo 11-17). To attain
lunar orbital velocity at u, =1.63 km/s, with an exhaust velocity
of about v, =3050 ms™!, Eq. (8) gives m;/my=0.495, which is
slightly worse than the actual value of 0.52. Furthermore, assuming
m, =213 kg (the mass of the ascent propulsion system’) such that
U, =45,Eq. (11) gives aq, =3.1, and Eq. (15) gives dyy,,, =1.64.
Hence, despite the differences in trajectory thrust profile, etc., the
simple analysis presented herein does not give unreasonableresults.
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